Water Demands in the Rock River Water Supply Planning Region

Draft Report on Water Demand Scenarios

Benedykt Dziegielewski, Scott C. Meyer, Zhenxing Zhang, Daniel Abrams, and Walt Kelly
Illinois State Water Survey

Middle Illinois Regional Water Supply Planning Committee
May 30, 2018
Project purpose and scope

- To develop water-demand scenarios (2015-2060) for all major user sectors Rock River Region
Analytical Approach

- Translate the projections of population and economic (including agricultural) growth into associated water supply needs.
- Account for current (2010 base year) and historical water withdrawals within each county.
- Future demand scenarios based on assumptions about future values of “drivers” and “explanatory variables.”
Five Major Sectors of Water Users

- Public water supply (PWS)
- Self-supplied domestic (DOM)
- Thermoelectric power generation (PG)
- Self-supplied industrial and commercial (IC)
- Irrigation, livestock, and environmental (ILE)
Data Sets and Levels

- Water use data from Illinois Water Inventory Program (IWIP) and USGS
- Historical water use and explanatory variable data for public water supply and at system level
- Facility-specific data for self-supplied thermoelectric power generation
- County-level data for self-supplied industrial/commercial, irrigation/livestock/environmental, self-supplied domestic sectors
Illinois Water Inventory Program (IWIP)

- Annual water use reporting program for major water users (> 100,000 gallons per day) in Illinois since 1978
- IWIP collects point source water withdrawals data from 3 sectors:
 1. Public Water Supply
 2. Self-Supplied Industrial-Commercial
 3. Agricultural Irrigation (since 2015)
 4. About 3,200 active facilities
- Prior to 2010, reporting was voluntary; now mandatory
- Periodic summaries of data published
Determinants of PWS Water Demand: (Derived from 1990-2010 data)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median household income</td>
<td>-0.198</td>
</tr>
<tr>
<td>Marginal price of water</td>
<td>+0.122</td>
</tr>
<tr>
<td>Employment/population ratio</td>
<td>+0.503</td>
</tr>
<tr>
<td>Precipitation – growing season</td>
<td>-0.060</td>
</tr>
<tr>
<td>Maximum daily temperature</td>
<td>+1.133</td>
</tr>
<tr>
<td>Conservation trend</td>
<td>-0.004</td>
</tr>
</tbody>
</table>

Table 2.5
Other Drivers of Future Demand

- Strong increasing trend in irrigated cropland
 - 4.3% per year between 1987 and 2012 (USDA)
- Projected industrial growth (employment)
- Median household income expected to grow
- Retail (real) prices of water are increasing
- Water efficiency in PWS is improving
Forecast Scenarios

Developed 3 sets of scenario assumptions

- Scenario 1:
 Baseline scenario (or Current Trends - CT)

- Scenario 2:
 Low growth (or Less Resource Intensive - LRI)

- Scenario 3:
 High growth (or More Resource Intensive - MRI)
Scenario Assumptions

<table>
<thead>
<tr>
<th>Factor</th>
<th>Scenario 1 - Current Trends (CT) or Baseline</th>
<th>Scenario 2 - Less Resource Intensive (LRI)</th>
<th>Scenario 3 – More Resource Intensive (MRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>IDPH and trend-based projections</td>
<td>IDPH and trend-based projections</td>
<td>IDPH and trend-based projections</td>
</tr>
<tr>
<td>Median household income</td>
<td>Existing projections of 1.0%/year growth</td>
<td>Existing projections of 0.7%/year growth</td>
<td>Higher growth of 1.2%/years</td>
</tr>
<tr>
<td>Water conservation</td>
<td>50% lower rate than historical trend</td>
<td>Continuation of historical trend</td>
<td>No extension of historical trend</td>
</tr>
<tr>
<td>Future water prices</td>
<td>Recent increasing trend (0.8%/year) will continue</td>
<td>Higher future price increases (1.6%/year)</td>
<td>Prices held at 2010 level in real terms</td>
</tr>
<tr>
<td>Irrigated land</td>
<td>Constant cropland, increasing golf courses</td>
<td>Decreasing cropland, no increase in golf courses</td>
<td>Constant cropland, increasing golf courses</td>
</tr>
<tr>
<td>Livestock</td>
<td>Baseline USDA growth rates</td>
<td>Baseline USDA growth rates</td>
<td>Baseline USDA growth rates</td>
</tr>
</tbody>
</table>

Table 1.1
Using average of IPCC models to predict changes in temperature and precipitation in the region by 2035 and 2060:

Relative to “normal” values 1971-2000

Drought defined as 40% deficit in growing season precipitation

<table>
<thead>
<tr>
<th>Climate Parameter</th>
<th>2035 Period</th>
<th>2060 Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot/Dry</td>
<td>Central</td>
</tr>
<tr>
<td>Change in Annual Avg. Temperature (°F)</td>
<td>3.4°</td>
<td>2.8°</td>
</tr>
<tr>
<td>Change in Annual Precipitation (%)</td>
<td>-0.3%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>
Rock River Water Supply Planning Region
Results
2010 Demand: Rock River WSPR

- Self-Supplied Domestic: 11 Mgd (1%)
- Self-Supplied Industrial and Commercial: 28 Mgd (2%)
- Self-Supplied Irrigation, Livestock, and Environmental: 52 Mgd (4%)
- Public Supply: 79 Mgd (6%)
- Self-Supplied Thermoelectric Power Generation: 1,160 Mgd (87%)

Mgd = million gallons per day

67 Mgd consumed
Public Water Supplies

- 255 systems
- 679,000 served
- 42 dominant systems
- 137,000 on domestic wells
Public Water Supplies: Source Water

- Surface water (rivers)
 - All in Rock Island County: Mississippi River
 - Major systems: Rock Island, Moline, East Moline

- Remainder on groundwater
 - Shallow sand and gravel aquifers
 - Bedrock aquifers
 - Sandstone
 - Carbonates
Public Water Supplies: Historic Data (example)

Population Served

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Winnebago County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL American – S. Beloit</td>
<td>4,100</td>
<td>4,200</td>
<td>6,000</td>
<td>4,700</td>
<td>7,800</td>
</tr>
<tr>
<td>Loves Park</td>
<td>15,653</td>
<td>17,452</td>
<td>20,040</td>
<td>22,767</td>
<td>24,700</td>
</tr>
<tr>
<td>North Park PWD</td>
<td>22,229</td>
<td>24,000</td>
<td>26,000</td>
<td>30,000</td>
<td>34,737</td>
</tr>
<tr>
<td>Rockford</td>
<td>140,000</td>
<td>149,000</td>
<td>155,000</td>
<td>156,000</td>
<td>162,296</td>
</tr>
<tr>
<td>Rockton</td>
<td>2,928</td>
<td>4,300</td>
<td>4,900</td>
<td>7,875</td>
<td>7,440</td>
</tr>
<tr>
<td>Winnebago Co. Residual</td>
<td>15,540</td>
<td>17,886</td>
<td>20,559</td>
<td>23,593</td>
<td>39,300</td>
</tr>
</tbody>
</table>

Water Use (Mgd)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Winnebago County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL American – S. Beloit</td>
<td>0.684</td>
<td>0.616</td>
<td>0.569</td>
<td>0.607</td>
<td>0.765</td>
</tr>
<tr>
<td>Loves Park</td>
<td>3.112</td>
<td>3.157</td>
<td>2.223</td>
<td>3.424</td>
<td>3.182</td>
</tr>
<tr>
<td>North Park PWD</td>
<td>1.848</td>
<td>2.283</td>
<td>2.735</td>
<td>3.651</td>
<td>3.477</td>
</tr>
<tr>
<td>Rockford</td>
<td>27.190</td>
<td>26.323</td>
<td>24.575</td>
<td>25.639</td>
<td>20.221</td>
</tr>
<tr>
<td>Rockton</td>
<td>0.539</td>
<td>0.715</td>
<td>0.695</td>
<td>0.914</td>
<td>0.807</td>
</tr>
<tr>
<td>Winnebago Co. Residual</td>
<td>1.772</td>
<td>3.544</td>
<td>2.211</td>
<td>2.693</td>
<td>2.348</td>
</tr>
</tbody>
</table>
Projected Population

Table 2.8

<table>
<thead>
<tr>
<th>County</th>
<th>Reported Population</th>
<th>Projected Population</th>
<th>2010-2060 Change</th>
<th>2010-2060 Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010(^1)</td>
<td>2020(^2)</td>
<td>2040(^3)</td>
<td>2060(^3)</td>
</tr>
<tr>
<td>Boone</td>
<td>54,144</td>
<td>61,504</td>
<td>69,084</td>
<td>76,814</td>
</tr>
<tr>
<td>Bureau</td>
<td>34,905</td>
<td>33,681</td>
<td>33,681</td>
<td>33,681</td>
</tr>
<tr>
<td>Carroll</td>
<td>15,364</td>
<td>14,169</td>
<td>14,169</td>
<td>14,169</td>
</tr>
<tr>
<td>Henry</td>
<td>50,432</td>
<td>48,233</td>
<td>48,233</td>
<td>48,233</td>
</tr>
<tr>
<td>Jo Daviess</td>
<td>22,660</td>
<td>22,137</td>
<td>22,137</td>
<td>22,137</td>
</tr>
<tr>
<td>Lee</td>
<td>35,970</td>
<td>36,066</td>
<td>36,349</td>
<td>36,645</td>
</tr>
<tr>
<td>Ogle</td>
<td>53,448</td>
<td>54,316</td>
<td>56,417</td>
<td>58,521</td>
</tr>
<tr>
<td>Rock Island</td>
<td>147,632</td>
<td>147,267</td>
<td>152,651</td>
<td>158,035</td>
</tr>
<tr>
<td>Stephenson</td>
<td>47,680</td>
<td>46,242</td>
<td>46,242</td>
<td>46,242</td>
</tr>
<tr>
<td>Whiteside</td>
<td>58,472</td>
<td>55,267</td>
<td>55,267</td>
<td>55,267</td>
</tr>
<tr>
<td>Winnebago</td>
<td>295,151</td>
<td>302,258</td>
<td>311,687</td>
<td>321,297</td>
</tr>
<tr>
<td>REGIONAL TOTAL</td>
<td>815,858</td>
<td>821,140</td>
<td>845,916</td>
<td>871,040</td>
</tr>
</tbody>
</table>

Data from U.S. Census Bureau and Illinois Department of Public Health
PWS Demand Scenario (CT)

<table>
<thead>
<tr>
<th>Year</th>
<th>Population Served</th>
<th>Demand gpcd</th>
<th>Demand Mgd</th>
<th>Locally Sourced (Mgd)</th>
<th>Imported (Mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ground Water</td>
<td>Surface Water</td>
</tr>
<tr>
<td>2010</td>
<td>678,746</td>
<td>117.2</td>
<td>79.52</td>
<td>62.93</td>
<td>15.83</td>
</tr>
<tr>
<td>2015</td>
<td>688,454</td>
<td>120.5</td>
<td>82.98</td>
<td>65.84</td>
<td>16.34</td>
</tr>
<tr>
<td>2020</td>
<td>696,742</td>
<td>118.9</td>
<td>82.82</td>
<td>65.83</td>
<td>16.19</td>
</tr>
<tr>
<td>2025</td>
<td>704,514</td>
<td>117.4</td>
<td>82.72</td>
<td>65.87</td>
<td>16.05</td>
</tr>
<tr>
<td>2030</td>
<td>709,471</td>
<td>116.0</td>
<td>82.29</td>
<td>65.60</td>
<td>15.90</td>
</tr>
<tr>
<td>2035</td>
<td>715,935</td>
<td>114.6</td>
<td>82.03</td>
<td>65.48</td>
<td>15.76</td>
</tr>
<tr>
<td>2040</td>
<td>722,399</td>
<td>113.2</td>
<td>81.76</td>
<td>65.36</td>
<td>15.61</td>
</tr>
<tr>
<td>2045</td>
<td>728,862</td>
<td>111.8</td>
<td>81.48</td>
<td>65.23</td>
<td>15.47</td>
</tr>
<tr>
<td>2050</td>
<td>735,326</td>
<td>110.4</td>
<td>81.21</td>
<td>65.10</td>
<td>15.33</td>
</tr>
<tr>
<td>2055</td>
<td>741,789</td>
<td>109.1</td>
<td>80.92</td>
<td>64.96</td>
<td>15.19</td>
</tr>
<tr>
<td>2060</td>
<td>748,254</td>
<td>107.8</td>
<td>80.63</td>
<td>64.81</td>
<td>15.05</td>
</tr>
<tr>
<td>2010-2060 Change</td>
<td>69,508</td>
<td>-9.4</td>
<td>1.11</td>
<td>1.88</td>
<td>-0.77</td>
</tr>
<tr>
<td>2010-2060 Change (%)</td>
<td>10.2</td>
<td>-8.0</td>
<td>1.4</td>
<td>3.0</td>
<td>-4.9</td>
</tr>
</tbody>
</table>

Table 2.13
PWS Current Trends Scenario

![Population Served Over Time](chart)

- **Total**
- **Groundwater**
- **Surface Water**

Population Served (log scale):
- 660,000 to 760,000

Demand (Mgd):
- 60 to 80

Years:
- 2000 to 2070
Large Thermoelectric Power Plants in Rock River Region

Modified from Table 4.2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee Energy (Natural Gas)</td>
<td>Lee</td>
<td>814</td>
<td>No data</td>
<td>No data</td>
<td>Not determined</td>
</tr>
<tr>
<td>Exelon - Byron Station (Nuclear)</td>
<td>Ogle</td>
<td>2,450</td>
<td>20,848,498</td>
<td>55.52</td>
<td>0.973</td>
</tr>
<tr>
<td>Cordova Energy (Natural Gas)</td>
<td>Rock Island</td>
<td>611</td>
<td>161,452</td>
<td>0.26</td>
<td>0.592</td>
</tr>
<tr>
<td>Exelon - Quad Cities Station (Nuclear)</td>
<td>Rock Island</td>
<td>2,019</td>
<td>14,565,059</td>
<td>1,103.87</td>
<td>27.682</td>
</tr>
<tr>
<td>NRG Rockford I & II (Natural Gas)</td>
<td>Winnebago</td>
<td>484</td>
<td>No data</td>
<td>No data</td>
<td>Not determined</td>
</tr>
</tbody>
</table>
Future Demands for Thermoelectric Plants

- Used unit-coefficient method = gross generation at the plant times the rate of water demand per unit of generated electricity
 - Once-through plants: 29 gallons/kWh
 - Closed loop plants: 1.0 gallon per kWh

- Future electricity demand in region estimated to be 10.14 MWh/capita-year (IL Commerce Commission for 2006)

- Assumptions for CT Scenario
 - Future generation in the existing thermoelectric power plants will continue at 2010 levels of gross generation.
 - No new thermoelectric power plants (with steam turbines that require water-based cooling) will be added through the end of the study period in 2060

- Water Demand = 1,160 Mgd per year
Industrial-Commercial Sector

- Self-supplied Mining
 - 6.9 Mgd in 2010
 - About ¾ mining use in Bureau and Rock Island Counties
IC Sector: Mining
Industrial-Commercial Sector

- Self-supplied Non-mining
 - 21.5 Mgd in 2010
 - Primarily Rock Island County (11.2 Mgd)
 - Carroll (2.2 Mgd) and Stephenson (2.1 Mgd) next most important

- IC Facilities also purchase water from PWSs
 - 25.7 Mgd in 2010

- Because IC encompasses many different types of facilities and water uses, determining demands is a challenge
IC Sector: Non-Mining

![Map of the IC Sector: Non-Mining area with annotations for Rock River WSPR, County Boundary, Major River, No Demand, and Self-supplied IC demand for non-mining uses (Mgd)].

- Rock River WSPR
- County Boundary
- Major River
- No Demand
- Self-supplied IC demand for non-mining uses (Mgd):
 - < 1.0
 - 1.0 to 5.0
 - > 5.0

The map includes counties such as Jo Daviess, Stephenson, Winnebago, Boone, Ogle, Carroll, Whiteside, Lee, Rock Island, Henry, and Bureau.
Industrial-Commercial Water Use: Non-Mining
Estimating Future Industrial-Commercial Demands

- Main driver of future IC water demand assumed to be the future output of goods and services
- Assumed long-term rates of labor productivity growth to be 1.0 - 1.5 % per year
- Use projected employment data and labor productivity
 - IL Dept. Employment Security
 - U.S. Dept. of Labor Bureau of Statistics
Estimating Future Industrial-Commercial Demands

Assumptions:

- Total county employment will follow published projections
- Self-supplied IC demand for each county will remain at percentage computed from 2010 totals
- Groundwater and surface water proportions will not change
- Major unknown is if water-intensive facilities, such as ethanol and biodiesel plants, are located within the region in the future
 - Not included, but could be simulated
IC Future Demand (CT)

45% increase
Irrigated Cropland, Acres

USDA Data
Irrigation Center Pivots

Center Pivots
- 2014
- 2012
- Rock River Region
- Counties
- Major Rivers

Map showing the distribution of irrigation center pivots across different counties and regions.
ILE Future Demands (CT)
Demand Scenarios – Rock River (without Thermoelectric)
Demand Scenarios – Middle Illinois (without Thermoelectric)
Changes in Demand due to Climate Change and Drought

- Hot & Dry climate scenario relative to CT “normal” climate:
 - Public supply: +8.7%
 - Self-supplied domestic: +8.8%
 - Cropland irrigation: +10.1%

- Drought year with 40% deficit in precipitation:
 - Public supply: +8.7%
 - Self-supplied domestic: +9.0%
 - Cropland irrigation: +34.0%
Summary (1)

Not including Thermoelectric Demand

Total demand projected to change by 2060 from 210 Mgd (normalized) in 2010 to:

- 201 Mgd under the LRI scenario, 4% decrease
- 261 Mgd under the CT scenario, 24% increase
- 351 Mgd under the MRI scenario, 67% increase

Under CT scenario, the 2010-2060 increase of 51 Mgd includes:

- Increase of 1.1 Mgd in PWS demand
- Decrease of 1.6 Mgd in self-supplied domestic demand
- Increase of 7.5 Mgd in IC demand
- Increase of 44.0 Mgd in ILE demand
Summary (2)

- Projected increase in demand caused by increase in projected employment from 275,269 in 2010 to 324,277 in 2060 (20% increase) mostly in Winnebago County.

- Effects of future climate appear to be modest (<10% increase in demand).

- Scenario results could be adjusted based on input from Regional Water Supply Planning Committee.
Input from the Committee

- Information on:
 - Power generating plants
 - New water-intensive industries
 - Growth in irrigation
 - Mining operation status

- Update water purchase map:

 https://www.isws.illinois.edu/illinois-water-supply-planning/interactive-maps

 Click on: "Statewide Municipal Water Use and Water Purchase Interactive Map"
Thank you!