

Green River Lowlands Scenario Planning

Update on Workshop 1

April 13, 2022

Abby Ebelherr, BHRC

Daniel Payette, BHRC

Kevin Linderman, NCICG

What is Scenario Planning?

Outcomes

- 1) Four scenarios
- 2) Strategies
- 3) Indicators
- 4) Report

Workshop 1

21 Participants

ISWS Presentation

- Water Demand in the Rock River Water Supply Planning Region, 2010-2060
- How ISWS Collects Its Data
- Limits of Data
- "Demand forecasts alone will not make for effective scenario planning"

Driving Forces of Change

"...[F]actors that are causing challenges in the present, as well as those likely to cause challenges in the future."

- S ocial/demographic
- T echnological
- **E** conomic
- E nvironmental
- P olicy/political

Tasks

- Fill out Driving Forces worksheet individually
- Come back together and discuss
- Decide on top 5-7 and write on post-it notes
- Put post-its on Driving Forces wall

Focal Question

How do we provide reliable, safe, and sustainable water supplies for current and future human and non-human residents and businesses in the Green River Lowlands?

Driving Forces

SOCIAL & DEMOGRAPHIC	TECHNOLOGY	ECONOMICS	ENVIRONMENT	POLICY & POLITICS	OTHER
Population decrease (13) - Increase knowledge of conservation practices (0) - Educating producers on importance of data collection (8)	Improved data collection (8) - Technology advances in agriculture that increase efficiency and reduce irrigation (0) - The rise of solar farms (1)	Economically feasible for producer (4) - Agriculture industry can still grow (0) - Confined animal feeding operations (0) - Aging infrastructure of water/waste systems will limit growth at municipal level (1)	Climate change (14) - Water quality (0)	Changes in regulations (10) - Future water rights issues (0) - Corn to soy as biofuel demand shrinks (1) - Commodity prices (1)	Efficiency of government operations (2) - Public and not-forprofit land purchases (0) - Processing facilities and new transportation methods (0)

What is most important (impactful)? What is most uncertain?

Driving force #2 Scenario B Scenario A Driving force #1 Scenario C Scenario D

Predictable Regulations, Goes Where Climate Goes	Extreme, More Variable Weather Changes	Climate Change	Unpredictable Regulations, Opposite of Climate Trends
Regulation Changes/Increased Regulation	Mild, Less Variable Weather Changes		

Regulation Changes

- Look at Additional vs. Removed Regulation
- Look at More vs. Less Regulation
- Look at Predictability of Regulation

Climate Change Scenario A Scenario B Extreme, Unregulated water use unpredictable Regulated water use weather with extreme weather with extreme weather events events events Regulations Significantly Increased and Follows Climate Patterns Regulations Rolled Back and Unpredictable Scenario C Unregulated water use with mild weather

events

Mild,

predictable

weather events

Scenario D Regulated water use with mild weather events

Regulation

Change

Next Steps

Questions?